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VALIDATION OF A NAVIER-STOKES SOLUTION ALGORITHM 
WITH EXPERIMENTAL VALUES IN A SUPERSONIC WAKE 

FRIEDRICH LEOFOLD 
ISL, F m c h - G m  Resemrh Imtitute of Saint-his, 5 Rue du &hi-Gusagnou, F-68301 Snint Louir, Fmnce 

SUMMARY 
This paper describes the validation of a finite element solver for an axisymmetric compressible flow with 
experimental values, especially velocities m e a s d  with a laser Doppler anemometer in the near wake of a circular 
cylinder. The equations under consideration arc the Navier-Stokes equations with hubdent tenns. A time-stepping 
scheme for the solution of these equations can be pmduced by applying a forward-time Taylor series expansion 
including time derivatives of second order. These time derivatives are e v a l d  in terms of space derivatives in the 
Lax-Wendroff fashion. The method is based on unstructured triangular grids with a high resolution in the radial 
direction. In order to @ct the measured turbulmt intensities more exactly, a modification of the Baldwin- 
Lornax model is neccsary. 

1. INTRODUCTION 
An accurate prediction of the flow behaviour mund aircraft is of great importance for the development 
of new aerospace technologies. Therefore the pndiction of aerodynamic behaviour is still hampered by 
our lack of knowledge concerning aftert>ody flows. As is well-known, the base drag of a projectile can 
reach up to 50% of the total drag at transonic or moderately high Mach numbers.' Owing to the great 
practical importance of base flows, many efforts have been devoted to this domain. Recent articles on 
such investigations were written by Delery and Lacau' in 1988 and Delery and Wagner' in 1990. In 
order to cut down the high costs involved in the development of aerospace technologies, the initial 
expensive wind tunnel experiments am increasingly being replaced by numerical simulations on 
computers. However, these methods am unsuitable for practical aedywmi c applications without 
validation. This subject will not be dealt with in greater detail h m  a general point of view, but the 
discussion will be limited to the examination of the near wake of a projectile in a supersonic flow. In 
order to obtain a suitable validation, a configuxation in which the experimental set-up and the 
numerical simulation are very close to each other will have to be defined. It is advantageous to avoid 
the shock waves provoked by the projectile and their reflections due to the wind tunnel geometry in 
order to prevent their interaction with the wake. Therefore a rod is used and fixed in the stagnation 
chamber in order to avoid shocks which would be provoked by attaching the body in the supersonic 
part of the wind tunnel. Instead, the computational domain begins one diameter before the base, where 
the inflow boundary is a measured boundary layer profile. The validation of a numerical method takes 
several steps into acco~n1.~ 

1. The governing equations have to describe the flow conditions in a correct way. The wake flow is 
simulated with the compressible Navier-Stokes equations in an axisymmetric coordinate 
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system. The appearance of sub-, trans- and supersonic flow regions forces us to use the unsteady 
formulation. 

2. In order to simulate complex configurations after the validation, the finite element method seems 
to be very usem. In the past several authors such as Liihner et al? and Peraire et d.' proposed 
that finite elements should be applied to a Lax-Wendroff scheme. 

3. Conveqence and stability are very important for the accuracy of the results. The time steps have 
to be kept below a certain limit and artificial viscosity is added to damp overshoots or wiggles 
where the exact solution shows jumps. 

4. In order to verify the numerical procedure, simple cases such as non-linear wave propagations in 
a shock tube are calculated and compared with the analytical solutions.6 

5 .  Finally, the configuration chosen for the validation could be calculated and certain modifications, 
e.g. the turbulence model, were necessary in order to get a correct description of the flow field. 

In the first part of this paper the configuration and flow conditions for this validation experiment are 
introduced. They are followed by a description of the experimental techniques, the method for the 
numerical simulation and finally the comparison between the experimental values and the theoretical 
investigations. 

2. EXPERIMENTAL SET-UP 
2.1. Facilities 

All measurements have been carried out in the ISL blowdown wind tunnel. The compressed air is 
stocked in tubes under a pressure of 250 bar. The air is filtered and dried in order to prevent shocks 
from appearing in the nozzle due to the condensation of humidity at low temperatures. The presswe in 
the stagnation chamber is estimated at 4.25 bar for a Mach number Mu = 2.06. The temperature in the 
chamber ranges from 10 to 30°C. This leads to the following conditions in the test section: 
temperature ?b, = 158 K, pressure p ,  = 466hPu, density j&,, = 1 . 022kgm-3 and velocity 
ii, = 519.1 m s-'. The time under constant flow conditions for a blowdown is about 40s. The 
dimensions of the test section are 200 x 200mm2. The Reynolds number is 1.9 x lo6 based on the 
diameter of the cylinder (38-66mm). The cylindrical body is fixed in the stilling chamber of the wind 
tunnel in order to suppress the shocks which would be provoked by attaching the body in the 
supersonic part of the test section. This leads to a body length of about 1 m (Figure 1). Surface streak 
patterns are applied in order to align the body parallel to the main flow direction. 

2.2. Flow field visualization technique 

In order to obtain the mean flow characteristics of the base flow region, schlieren flow visualization 
is used (Figure 2). This technique indicates density gradients in the observed zone. The flow 
configuration is indicated in Figure 3, obtained from the schlieren photo in Figure 2.' The initial 
boundary layer is fully turbulent it separates from the model at the edge of the base! and is accelerated 
through the expansion fan. The fan is terminated by the lip shock, which then recompresses the flow to 
the base pressure. The appearance of the lip shock is due to an overexpansion of the flow at the 
separation edge. Behind the expansion fan the boundary layer develops as a mixing layer, which is 
subjected to recompression due to a shock wave and finally fonns the wake. The mixing layer encloses 
the recirculation zone. Further downstream shocks provoked by the wind tunnel geometry appear in the 
schlieren photograph, but they do not interfere with the near wake. 
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Figure 1. Blowdawn tunnel at ISL 
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Figure 3. Main characteristics of near wake 
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2.3. Investigations with a laser Doppler anemometer 

The principle of laser anemometry is to create an intersection of two laser beams with coherent 
light. Thus a system of bright and dark plane interference fringes is formed parallel to the bisecting 
plane of the two incident beams. The light scattered by the particles passing through this inkrsection 
varies periodically. This kquency is proportional to the velocity of the particles and inversely 
proportional to the distance between two fiinges. Our laser Doppler anemometer is a four-beam set- 
up which used two colours of a 5 W argon laser. The green colour can be found at 514.5 nm and the 
blue one at 488 nm. The initial blue-green beam is divided by a Bragg cell into four beams, two of 
each colour. One beam of each colour is shifted to 40 M H z  to ensure the displacement of the fiinges 
in order to get access to the velocity inside the recirculation zone. Them the beams arc focused on 
the measuring point. The measuring point can be displaced in all three dimensions, but only the 
velocities in one symmetrical plane are measured. The scattered light is collected in the forward- 
scattering mode by a convergent optical set-up which focuses the image of the measuring point on 
the front part of an optical fibre. The scattered light is then divided into its two components. These 
two light beams finally reach two photomultipliers, the output signals of which are treated by a TSI 
F A  750 digital signal processor. 

For all these measurements the flow is seeded with DEHS particles introduced in the stilling 
chamber, just in front of the convergent part that leads to the throat. In order to get a higher density 
of particles in the recirculation zone, we add some more DEHS at the base of the circular cylinder. 

3. DESCRIPTION OF THE NUMERICAL SIMULATION 

3. I .  Compmsible Navier4toke.s equations 

As already shown in Section 2.1, the case for validation is the wake behind a circular cylinder at 
Ma =2.06. For an axisymmetric co-ordinate system the Navier-Stokes equations governing 
compressible flows, using mass-averaged variables, may be written in dimensionless form as8 

where q represents the solution vector and E and F am the flux vectors. The appearance of the vector G 
is provoked by the formulation in cylindrical co-ordinates: 
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with the viscous shear stresses T and heat fluxes rp: 

Here x and r are the co-ordinates and u and v the velocities in the axial and radial directions 
respectively. The time co-ordinate is called t and p, T ,  p and h represent the density, temperature, 
pressure and enthalpy respectively. All the dimensionless variables as well as the viscosity coefficient 
p, the bulk modulus 1 and the thermal conductivity K, are defined as 

- - - - 
X r iii, U V P 

;i k v  
D' D'  ij' 

TW PWUL UW Pa, 100 t, 

x = 7  r = -  t = -  u = _ ,  V = T  p = - ,  

T=-, p = - ,  h = F ,  
- - - - (4) 

UW UW PO0 

T P h /,I=:, P A=-,  k = 7 .  

The dimensional values are overlined. The index 00 relates to the unperturbed flow in h u t  of the 
projectile. The characteristic dimension in our case is the diameter of the cylinder, D. Therefore the 
Reynolds number Re,,D, the Prandtl number Pr and the Mach number Ma, are defined as 

- 
Ma, =U,, ( 5 )  

pmiimD P m c p  = -, P r = - ,  
Pa, %W ccn 

where C = J(~T,k/fi) represents the speed of sound (& is the gas constant, fi  is the molar mass and 
K is the ratio of the specific heats). The equation set is completed by adding the state equation and, 
assuming the fluid to be an ideal gas, this yields 

(6) 2 pKMa, = pT, 

Using Stokes' hypothesis, the viscosity coefficient pi and the bulk modulus 1 are related according to 
A = - 3 p,. Supposing the Prandtl number to be constant, k, = pl is obtained. The molecular dynamic 
viscosity pl  is given by Sutherland's law as 

where the Sutherland constant for air is S, = lWK/p,. 

3.2. Turbulence model for the near wake 

The effect of turbulence is simulated in ternis of an eddy viscosity coefficient &: 

P = P l  +PI .  (9) 

In the original Baldwir-hmax model: which is a two-lyer algebraic eddy viscosity model, & is 
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where y represents the normal distance fiom the wall and )“L is the smallest value of y at which values 
from the inner and outer formulae are equal. In the inner region the eddy viscosity is given by the Van 
Driest formulation as 

where K, = 0.40 is the von K h n h  constant. The Van Driest damping factor is given by 

where T, is the wall shear stress. In the outer region the eddy viscosity coefficient is given by 

when K2 = 0.0168 is Clauser’s constant and Ccp = 1.6 is an additional constant. From the outer 
function F,, we take the smallest value of 

a u a v  

and y- is the value of y at which F,, occurs. The Klebanoff intermittency correction is given by 

with C- = 0.3. To avoid large differences in the behaviour of the normal co-ordinate y-, the 
average value of four or five neighbouring grid points in the Streamwise direction is taken. The 
comparison between the calculated turbulent intensities and the experimental values has shown large 
discrepancies in the region of the near wake. Therefore a few modifications of the original turbulence 
model are necessary. 

1. In order to avoid problems in fixing the maximum of y-, the length scale is now measured 
between the prolongation of the cylinder wall and the line where the velocity is equal to zero. To 
get a qualitatively correct description of the detachment of the coherent structum near the saddle 
point, y- should always be less than ib (Figure 4). 

2. For the outer function FWm we can write 
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3. The value y ' is now the distance between the point y and the line where the velocity is equal to 
zero. F- is the maximum of 

4. The Klebanoff intermittency function is replaced by a normal distribution, assuming that the 
derivative at the point of deflection is equal to the maximum vorticity in the wake: 

If the determined eddy viscosity of the Baldwin-Lomax model is greater than the near-wake viscosity, 
the original turbulence model is used again. 

3.3. Weighted residual appmximation 

order to avoid these problems we multiply the system by r: 
With a node-centred scheme, problems can be expectad for equations ( I )  when r is equal to zero. In 

(20) 
t q  i)rE t F  -+-+-+G=- 
at L t 

A time-stepping scheme for the solution of this equation can be produced by writing a Taylor series in 
time, correct to second order, as 

The time derivatives may be evaluated in terms of space derivatives in the Lax-Wendroff'o fashion. 
A = ikE/arq, B = W / & q  and C = X/&q are the Jacobi d c e s  for the Euler equations. Viscous 
terms involving derivatives or products of derivatives are treated in the following m c r . 1 1 * 1 2  
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-- arl!? afq a arq arq a a*9 - A:- +AD; - - + A ; -  +AD;-  - ax at.' ax ax a x a x  ar 

For the derivatives of second order we make the following transformation, for example: 

where subscripts x and r represent the derivatives of the Jacobi matrices in the corresponding 
directions. The matrices could be arranged in the following way: 

where AV, is equal to zero. All matrices are described in the Appendix. Applymg the divergence 
theorem, the Galerkin weighted residual statement, as shown by Liihner er al! and P& et al.: can 
be expressed as 

ArqN dQ = fn +fr, (26) 

where N is a piecewise linear approximation. By using the same approximation for the radius r, a higher 
accuracy in the radial direction is obtained,13 which permits us to calculate the pressure, enthalpy, etc. on 
the axis. The integds that appear in the mass matrix, J', 2nN,NIrINkd+' dxdr, are more difficult to 
evaluate; however, they may still be derived in closed form. The approximation for the solution vector q 
is linear and for the Jacobi matrices it is piecewise constant. Thus no loss of accuracy can be noted, 
because the matrices contain derivatives of the vector q, which will be piecewise constant. 

3.4. Zime step and artificial viscosity 

With this approximation scheme we get a consistent mass matrix, the entries of which are defined by 

M = J, J, N/N,riNk d~cir. 

This equation system is solved explicitly and iteratively'4 by writing 

Arq(") = fn +fr + Arq(" - I )  - MM-'Arq("-'), L (28) 
where superscript (m) represents the mth iteration, Arq(O) = 0 and ML is the lumped mass matrix 

(h?$. In order to comply with the stability condition, the local time step should 
satisfy the relation 

= 

where 4, is the radius of the inscribed circle. Owing to shocks and other discontinuities inherent in 
this problem, further stabilization is necessary. For the boundary layer we use the artificial Viscosity 
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Figure 5 .  Initial grid for near wake with 2748 elements and 1453 nodes 

proposed by MacCormack and BaldwinI6 and Morgan and Peraire:" elsewhere the method suggested 
by Lapidus" and Lijhner et ~ 1 . ' ~  is applied. 

4. MESH DESCRIPTION 

The mesh is defined within the boundaries given by our validation experiment. The velocities at the 
inflow boundary, which is situated one diameter before the base, are given by the investigations with 
the laser Doppler anemometer. The upper wall is treated as a solid wall without any viscous effects. 
The outflow boundary is set far downstream to ensure that there are only supersonic velocities. 
Between the wall and the flow boundaries several different meshes have been generated for this 
configuration. The initial grid is built up in two steps with the so-called Delaunay triangulation.20 First 
a set of nodes in the coinputational domain is generated, then the elements are calculated from the node 
co-ordinates. The Delaunay triangulation is an algorithm allowing one to find well-adapted triangles 
(small interior angles are avoided) associated with the set of given nodes.21J2 The initial mesh has 21 
nodes at the inflow boundaxy and 25 nodes on the cylinder wall. The relatively coarse initial grid, 
which covers the entire investigation domain, is successively refined by subdividing elements into 
smaller elements. In this case a triangle is divided into four subtriangles. The boundary layer and the 
zone just behind the base (special consideration being given to the lip shock) are refined (Figure 5).  
The mesh with which the numerical simulation was started has 2748 elements and 1453 nodes. If the 
solution converges, the grid is refined until there are no marked differences left between two successive 
grids. The last mesh contains 25,412 elements and 13,062 nodes. 

5.  COMPARISON BETWEEN MEASUREMENT AND SIMULATION 

Plate 1 represents the calculated density contribution and velocities in the near wake. The position of 
the calculated shocks and expansion waves is identical with the schlieren flow visualization. Even the 
contours of the recirculation zone are the same. The general features of the flow field are well 
represented from a qualitative point of view. In Plate 2 the absolute values of the mean velocities are 
compared with the measured ones. In fact, as it appears near the centreline, the values of the reverse 
axial velocities are overpredicted and the reacceleration after the reattachment point is higher in the 
experiment. Moreover, the turbulence level (Plate 3), represented by the Reynolds shear stress values, 
is underpredicted behind the saddle point. There are three reasons for this behaviour. In order to 
increase the data rate of the laser Doppler measurements, some particles have to be added near the 
base. Therefore the turbulent intensities are not measured in this region and the reverse axial velocities 
may be too low. In the schlieren photograph a detachment of coherent structures could be seen near the 
reattachment point. The flow is no longer axisymmetric, therefore three-dimensional effects are 



Plate 3. Comparison of the Reynolds shear stress contribution. (a) simulation, (b) experiment 
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prevailing. It is important to keep in mind that we calculate a ‘quasi-steady’ solution, but actually the 
flow is ~nsteady.’~ Therefore effects provoked by the detachment of the coherent structures could not 
be shown by these numerical investigations. 

6. CONCLUSIONS 

The prediction of the numerical simulation has shown that although the modified algebraic turbulence 
model uses simplified approaches, the solution leads to a quantitatively correct description of the near- 
wake properties. However, these results are only obtained by a modification of the original turbulence 
model. Numerid investigations have to be compared with experimental values in order to show the 
reliability of these methods. only with this intermediate step of validation will numerical methods gain 
more importance in the development of aerospace technologies. 
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APPENDIX: JACOB1 MATRICES 

A-matrix: A = ikE/&q 
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