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VALIDATION OF A NAVIER-STOKES SOLUTION ALGORITHM
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SUMMARY

This paper describes the validation of a finite element solver for an axisymmetric compressible flow with
experimental values, especially velocities measured with a laser Doppler anemometer in the near wake of a circular
cylinder. The equations under consideration are the Navier-Stokes equations with turbulent terms. A time-stepping
scheme for the solution of these equations can be produced by applying a forward-time Taylor series expansion
including time derivatives of second order. These time derivatives are evaluated in terms of space derivatives in the
Lax—Wendroff fashion. The method is based on unstructured triangular grids with a high resolution in the radial
direction. In order to predict the measured turbulent intensities more exactly, a modification of the Baldwin—
Lomax model is necessary.
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1. INTRODUCTION

An accurate prediction of the flow behaviour around aircraft is of great importance for the development
of new aerospace technologies. Therefore the prediction of aerodynamic behaviour is still hampered by
our lack of knowledge concerning afterbody flows. As is well-known, the base drag of a projectile can
reach up to 50% of the total drag at transonic or moderately high Mach numbers.' Owing to the great
practical importance of base flows, many efforts have been devoted to this domain. Recent articles on
such investigations were written by Delery and Lacau? in 1988 and Delery and Wagner' in 1990. In
order to cut down the high costs involved in the development of acrospace technologies, the initial
expensive wind tunnel experiments are increasingly being replaced by numerical simulations on
computers. However, these methods are unsuitable for practical aerodynamic applications without
validation. This subject will not be dealt with in greater detail from a general point of view, but the
discussion will be limited to the examination of the near wake of a projectile in a supersonic flow. In
order to obtain a suitable validation, a configuration in which the experimental set-up and the
numerical simulation are very close to each other will have to be defined. It is advantageous to avoid
the shock waves provoked by the projectile and their reflections due to the wind tunnel geometry in
order to prevent their interaction with the wake. Therefore a rod is used and fixed in the stagnation
chamber in order to avoid shocks which would be provoked by attaching the body in the supersonic
part of the wind tunnel. Instead, the computational domain begins one diameter before the base, where
the inflow boundary is a measured boundary layer profile. The validation of a numerical method takes
several steps into account.’

1. The goveming equations have to describe the flow conditions in a correct way. The wake flow is
simulated with the compressible Navier-Stokes equations in an axisymmetric co-ordinate
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system. The appearance of sub-, trans- and supersonic flow regions forces us to use the unsteady
formulation.

2. In order to simulate complex configurations after the validation, the finite element method seems
to be very useful. In the past several authors such as Lohner ef al.* and Peraire et al.® proposed
that finite elements should be applied to a Lax—Wendroff scheme.

3. Convergence and stability are very important for the accuracy of the results. The time steps have
to be kept below a certain limit and artificial viscosity is added to damp overshoots or wiggles
where the exact solution shows jumps.

4. In order to verify the numerical procedure, simple cases such as non-linear wave propagations in
a shock tube are calculated and compared with the analytical solutions.®

S. Finally, the configuration chosen for the validation could be calculated and certain modifications,
e.g. the turbulence model, were necessary in order to get a correct description of the flow field.

In the first part of this paper the configuration and flow conditions for this validation experiment are
introduced. They are followed by a description of the experimental techniques, the method for the
numerical simulation and finally the comparison between the experimental values and the theoretical
investigations.

2. EXPERIMENTAL SET-UP
2.1. Facilities

All measurements have been carried out in the ISL blow-down wind tunnel. The compressed air is
stocked in tubes under a pressure of 250 bar. The air is filtered and dried in order to prevent shocks
from appearing in the nozzle due to the condensation of humidity at low temperatures. The pressure in
the stagnation chamber is estimated at 4-25 bar for a Mach number Ma = 2-06. The temperature in the
chamber ranges from 10 to 30°C. This leads to the following conditions in the test section:
temperature 7, = 158K, pressure p., = 466hPa, density p,, =1-022kgm™> and velocity
fi,, = 519-1ms™". The time under constant flow conditions for a blow-down is about 40s. The
dimensions of the test section are 200 x 200 mm?®. The Reynolds number is 1-9 x 10° based on the
diameter of the cylinder (38-66 mm). The cylindrical body is fixed in the stilling chamber of the wind
tunnel in order to suppress the shocks which would be provoked by attaching the body in the
supersonic part of the test section. This leads to a body length of about 1 m (Figure 1). Surface streak
patterns are applied in order to align the body parallel to the main flow direction.

2.2. Flow field visualization technigue

In order to obtain the mean flow characteristics of the base flow region, schlieren flow visualization
is used (Figure 2). This technique indicates density gradients in the observed zone. The flow
configuration is indicated in Figure 3, obtained from the schlieren photo in Figure 2.7 The initial
boundary layer is fully turbulent; it separates from the model at the edge of the base and is accelerated
through the expansion fan. The fan is terminated by the lip shock, which then recompresses the flow to
the base pressure. The appearance of the lip shock is due to an overexpansion of the flow at the
separation edge. Behind the expansion fan the boundary layer develops as a mixing layer, which is
subjected to recompression due to a shock wave and finally forms the wake. The mixing layer encloses
the recirculation zone. Further downstream shocks provoked by the wind tunnel geometry appear in the
schlieren photograph, but they do not interfere with the near wake.
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2.3. Investigations with a laser Doppler anemometer

The principle of laser anemometry is to create an intersection of two laser beams with coherent
light. Thus a system of bright and dark plane interference fringes is formed parallel to the bisecting
plane of the two incident beams. The light scattered by the particles passing through this intersection
varies periodically. This frequency is proportional to the velocity of the particles and inversely
proportional to the distance between two fringes. Our laser Doppler anemometer is a four-beam set-
up which used two colours of a 5 W argon laser. The green colour can be found at 514-5 nm and the
blue one at 488 nm. The initial blue—green beam is divided by a Bragg cell into four beams, two of
each colour. One beam of each colour is shifted to 40 MHz to ensure the displacement of the fringes
in order to get access to the velocity inside the recirculation zone. Then the beams are focused on
the measuring point. The measuring point can be displaced in all three dimensions, but only the
velocities in one symmetrical plane are measured. The scattered light is collected in the forward-
scattering mode by a convergent optical set-up which focuses the image of the measuring point on
the front part of an optical fibre. The scattered light is then divided into its two components. These
two light beams finally reach two photomultipliers, the output signals of which are treated by a TSI
IFA 750 digital signal processor.

For all these measurements the flow is seeded with DEHS particles introduced in the stilling
chamber, just in front of the convergent part that leads to the throat. In order to get a higher density
of particles in the recirculation zone, we add some more DEHS at the base of the circular cylinder.

3. DESCRIPTION OF THE NUMERICAL SIMULATION

3.1. Compressible Navier-Stokes equations

As already shown in Section 2.1, the case for validation is the wake behind a circular cylinder at
Ma =2-06. For an axisymmetric co-ordinate system the Navier—Stokes equations governing
compressible flows, using mass-averaged variables, may be written in dimensionless form as®

dq 8 dF F+G 1 (E E+FV+G") )

atm Tt T TR\ o

where g represents the solution vector and £ and F are the flux vectors. The appearance of the vector G
is provoked by the formulation in cylindrical co-ordinates:

P [ pu pv 0
pu pi? +p puv 0
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with the viscous shear stresses T and heat fluxes ¢:

du ou 13 av du 134
tn=2p§+i<-a;+;5r-(rv)), 'y = 2 — +}.( +-—( ))
13 av
Tog = 24 = +}.( +——(rv)) r,:y(%+§), €))
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Here x and r are the co-ordinates and u and v the velocities in the axial and radial directions
respectively. The time co-ordinate is called ¢ and p, T, p and h represent the density, temperature,
pressure and enthalpy respectively. All the dimensionless variables as well as the viscosity coefficient
u, the butk modulus A and the thermal conductivity &, are defined as

ti i
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The dimensional values are overlined. The index oo relates to the unperturbed flow in front of the
projectile. The characteristic dimension in our case is the diameter of the cylinder, D. Therefore the
Reynolds number Re,, p, the Prandtl number Pr and the Mach number Ma,,, are defined as
Req p = Pocteel pr = PooCoeo May, = 2=, ©)
Hoo kwoo Coo

where ¢ = /(xT, R/m) represents the speed of sound (R is the gas constant, / is the molar mass and
K is the ratio of the specific heats). The equation set is completed by adding the state equation and,
assuming the fluid to be an ideal gas, this yields

poacz,o =pT ', 6)

p=Iph—1p(2 +V))(x — 1). ™

Using Stokes’ hypothesis, the viscosity coefficient u, and the bulk modulus A are related according to
= —2 ;. Supposing the Prandtl number to be constant, k,, = y, is obtained. The molecular dynamic
v1scosny 4 is given by Sutherland’s law as

1+8,
= 3/2 8
m=T T+S,’ ®)

where the Sutherland constant for air is S, = 100K/T,,.

3.2. Turbulence model for the near wake
The effect of turbulence is simulated in termis of an eddy viscosity coefficient y;:
b=t ©)
In the original Baldwin—Lomax model,’® which is a two-layer algebraic eddy viscosity model, g, is
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given by
(}‘t)mncr for y = Jko
(Mouer fOry >3

where y represents the normal distance from the wall and y; is the smallest value of y at which values
from the inner and outer formulae are equal. In the inner region the eddy viscosity is given by the Van
Driest formulation as

= (10)

ov

(#)imner = PIK Y [)x(.}’)]2 p

Reoo'D, (11)

where K; = 0-40 is the von Kdrmin constant. The Van Driest damping factor is given by

v (pwfwy)) ’

T 12)

Fo) = 1 - exp( -

where 1, is the wall shear stress. In the outer region the eddy viscosity coefficient is given by
(Mouer = PKCopFwakeFxieRes, s (13)

where K, = 0-0168 is Clauser’s constant and C_, = 1-6 is an additional constant. From the outer
function Fy,xp we take the smallest value of

YemaxFmax: (14)
kaymax le/mev

where up;; = max[/(u? + v*)] — min[/(x* +?)],

Fyaxe = [

av
Fowe = max(y |5 - 2| For0) as)

and y,,, is the value of y at which F,, occurs. The Klebanoff intermittency correction is given by

1
1+ 5-5(Cxuen ¥/ You)®’

Fps0) = (16)
with Cx;gg = 0-3. To avoid large differences in the behaviour of the normal co-ordinate y,,,, the
average value of four or five neighbouring grid points in the streamwise direction is taken. The
comparison between the calculated turbulent intensities and the experimental values has shown large
discrepancies in the region of the near wake. Therefore a few modifications of the original turbulence
model are necessary.

1. In order to avoid problems in fixing the maximum of yn,,, the length scale is now measured
between the prolongation of the cylinder wall and the line where the velocity is equal to zero. To
get a qualitatively correct description of the detachment of the coherent structures near the saddle
point, ymsx should always be less than D (Figure 4).

2. For the outer function Fy,xg We can write

Wl
Frearw = COnearw CoidVmax F—D'f s amn
max

where CNEARW =2.
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Figure 4. Domains of turbulence models

3. The value y’ is now the distance between the point y and the line where the velocity is equal to
zero. F,. is the maximum of

Fauy = maxy/| ’—__. (8)

4. The Klebanoff intermittency function is replaced by a normal distribution, assuming that the
derivative at the point of deflection is equal to the maximum vorticity in the wake:

2
of)’). (19)

If the determined eddy viscosity of the Baldwin—Lomax model is greater than the near-wake viscosity,
the original turbulence model is used again.

3.3. Weighted residual approximation

With a node-centred scheme, problems can be expected for equations (1) when r is equal to zero. In
order to avoid these problems we multiply the system by r:
arqg OE  orF _ 1 8rE"+arF"+Gv
a & o " Rep \ & or )

20

A time-stepping scheme for the solution of this equation can be produced by writing a Taylor series in
time, correct to second order, as

rg*t! =rq"+AtM+ﬁaﬁJl

21
a t2 1)

The time derivatives may be evaluated in terms of space derivatives in the Lax~Wendroff® fashion.

A = &E/drq, B= &xF /drq and C = 3G/drq are the Jacobi matrices for the Euler equations. Viscous
terms involving derivatives or products of derivatives are treated in the following manner.'!'?

rE' =rU, (rq, %) +rU, (rq, %),

a " 22)
rF = rW, (rq, Eq) +rw, (rq. ;q),
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where  AY = orlU,/org, ADY = (3/3x)arU,/drq, A =drU,/drq, AD = (3/ar)arUs,/drq,
BY = orW, /arq, BD}, = (3/ax)orW, /arq, BY = 3rW,/drq and BD} = (3/dr)arW,/drq. Thus we obtain

orEY ;] voadrg  org vadrg
pw =4} ax+AD‘ax ax+A +AD’ax ol )

oF' . 0rq voadrg . 0rq v org

o =B} +BD‘8rax+B +BD’8r ™
For the derivatives of second order we make the following transformation, for example:
d arq arq
v __ 1 . \A \4

AD,ax P ax( ax) AD”ax (24)

where subscripts x and r represent the derivatives of the Jacobi matrices in the corresponding
directions. The matrices could be arranged in the following way:

qu arq orqg

bk G} Yk Aav. 24— 4y —ap )4

AVX (A X, X ax r ar ( r AD’,X) ar
ar ar an ar @)

BY, a;’ (8 —BD;_,)E;", 7k WY - BD}) 2} 1

where AV, is equal to zero. All matrices are described in the Appendix. Applymg the divergence
theorem, the Galerkin weighted residual statement, as shown by Lohner et al.* and Peraire et al.,® can
be expressed as

J ArgN dQ = fo +f¢ (26)
Q

where N is a piecewise linear approximation. By using the same approximation for the radius r, a higher
accuracy in the radial direction is obtained,'® which permits us to calculate the pressure, enthalpy, etc. on
the axis. The integrals that appear in the mass matrix, [ [ ZnMMr,»N,‘qz“ dx dr, are more difficult to
evaluate; however, they may still be derived in closed form. The approximation for the solution vector ¢
is linear and for the Jacobi matrices it is piecewise constant. Thus no loss of accuracy can be noted,
because the matrices contain derivatives of the vector g, which will be piecewise constant.

3.4. Time step and artificial viscosity
With this approximation scheme we get a consistent mass matrix, the entries of which are defined by

M =J J N,N;7:N; dxdr. @7

This equation system is solved explicitly and iteratively'* by writing
Arg™ = fo + fr + Arg™ ™D — MM[ ' Arg®™ =D, (28)

where superscript (m) represents the mth iteration, Arg®® = 0 and M; is the lumped mass matrix
My);; = Y, (szk. In order to comply with the stability condition, the local time step should
satisfy the relation’

At < = ¢l
z<6”, (29)

where R, is the radius of the inscribed circle. Owing to shocks and other discontinuities inherent in
this problem, further stabilization is necessary. For the boundary layer we use the artificial viscosity
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Figure 5. Initial grid for near wake with 2748 elements and 1453 nodes

proposed by MacCormack and Baldwin'® and Morgan and Peraire:'” elsewhere the method suggested
by Lapidus'® and Lohner et al.'® is applied.

4. MESH DESCRIPTION

The mesh is defined within the boundaries given by our validation experiment. The velocities at the
inflow boundary, which is situated one diameter before the base, are given by the investigations with
the laser Doppler anemometer. The upper wall is treated as a solid wall without any viscous effects.
The outflow boundary is set far downstream to ensure that there are only supersonic velocities.
Between the wall and the flow boundaries several different meshes have been generated for this
configuration. The initial grid is built up in two steps with the so-called Delaunay triangulation.?° First
a set of nodes in the computational domain is generated, then the elements are calculated from the node
co-ordinates, The Delaunay triangulation is an algorithm allowing one to find well-adapted triangles
(small interior angles are avoided) associated with the set of given nodes.?'*? The initial mesh has 21
nodes at the inflow boundary and 25 nodes on the cylinder wall. The relatively coarse initial grid,
which covers the entire investigation domain, is successively refined by subdividing elements into
smaller elements. In this case a triangle is divided into four subtriangles. The boundary layer and the
zone just behind the base (special consideration being given to the lip shock) are refined (Figure 5).
The mesh with which the numerical simulation was started has 2748 elements and 1453 nodes. If the
solution converges, the grid is refined until there are no marked differences left between two successive
grids. The last mesh contains 25,412 elements and 13,062 nodes.

5. COMPARISON BETWEEN MEASUREMENT AND SIMULATION

Plate | represents the calculated density contribution and velocities in the near wake. The position of
the calculated shocks and expansion waves is identical with the schlieren flow visualization. Even the
contours of the recirculation zone are the same. The general features of the flow field are well
represented from a qualitative point of view. In Plate 2 the absolute values of the mean velocities are
compared with the measured ones. In fact, as it appears near the centreline, the values of the reverse
axial velocities are overpredicted and the reacceleration after the reattachment point is higher in the
experiment. Moreover, the turbulence level (Plate 3), represented by the Reynolds shear stress values,
is underpredicted behind the saddle point. There are three reasons for this behaviour. In order to
increase the data rate of the laser Doppler measurements, some particles have to be added near the
base. Therefore the turbulent intensities are not measured in this region and the reverse axial velocities
may be too low. In the schlieren photograph a detachment of coherent structures could be seen near the
reattachment point. The flow is no longer axisymmetric, therefore three-dimensional effects are
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prevailing. It is important to keep in mind that we calculate a ‘quasi-steady’ solution, but actually the
flow is unsteady.?® Therefore effects provoked by the detachment of the coherent structures could not
be shown by these numerical investigations.

6. CONCLUSIONS

The prediction of the numerical simulation has shown that although the modified algebraic turbulence
model uses simplified approaches, the solution leads to a quantitatively correct description of the near-
wake properties. However, these results are only obtained by a modification of the original turbulence
model. Numerical investigations have to be compared with experimental values in order to show the
reliability of these methods. Only with this intermediate step of validation will numerical methods gain
more importance in the development of aerospace technologies.
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APPENDIX: JACOBI MATRICES
A-matrix: A = 3rE/drq
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k=3p,x1y G- Ku A=y k-1
2 2
(30)
—uv v u 0
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ADY-matrix: ADY, = dr¥,/drq,
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BV,-matrix: BV, = B] — BD},
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